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M~H yySURME1~ OF INON-LINSAR FORCES ANlD MOMUWS

BY W-AOS OF FRIM, FLIGET TESTSn

ABSTEACT

It has been observed, that the behavior of missiles either

moving under the influence cf non-linear forces and masents or flYing

at large angles of yw is frequently well described by curves of the

as-- form as those generated by linear force systems and mall a;-!,:es

of yaw. With this tn mind an "equivalent" linear solution to the

actual eqmuatone of ywing motioi is obtained.

This equivalent linear solution has been used in the analysis

of a vide variety of progreus fired on WL's Spark Ranges and considerable

success hnsj been experiencel. Excellent internal consistency has

been observed in easuring non-linear normal and Magnus forces and

their amnts and, in all cases where wind tunnel results were available,

they iere in good agreement with range results.

The applicaticn of this technique to the equally i -portant problem

Spredicting yawing wtion in described.
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TABLE OF SYMfROT*

A axial moment of inertia 4

a 4 coefficients in the drag equation (Equation, (22))

B transverse unent of inertia

b

d diameter

e~j e2 ,C unit vectors along axes of fixed-plane co-ordinates

SP, aerodynmaic force vector

drag force FDI
IL lift force

£ ~~accelerationi due to gravity *'

Ij j. M J+ k-2(j]. jJ A )

A3

Xi, Z Kia 2 k 2 'i -A, D,DA, F,R, L A 4MA,N, NA, S, T

(Expansion as a function of 8F of serodynsaic coefficients

defined in Equations (5 - 10))

lite ~bar. Sybosich are i troucdinte appeniesapar

closeto teir efintiaw
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Ki Ki0 e i; = ', 2 amplitude of i-th freq mntyp 1

1  1,2 mid-ranj" amplitude of i-th frequency (p 0).Ki0 ,

KA axili spin lecelei' tLe)n coef!" .•'-uts

Sdrag coefficei at tD(
axial drag coef~icLA-t

K .)�Mgnus force coejr .. crs e

K1  moment coefficient die to cross angular velocity

YL %lift force coefficie-:. i.bP. to ".v

I'm overturning (or rightin, moment coefficient due to yaw

Kj moment coefficient due t cross acceleration

KN normal force coefficient be to yaw

NA norml force coefficient :e to cross acceleratic2

normi force coefficient d e to cross angular vel €city

X-iuS m t coefficient

k , axial raeius of gyratic in calibers

k2 V uvc-se z a ttion In cali'-ers

S - cosine of total yalf iglet.
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(MI, K M-) aerodynamic moment vector

YA mass

(n 2, ~ n5 ) direction cosines of missile's axis vith respect to

range co-ordinates

dt arclength along the trajectory in calibers
fo

QI constants in the swerve equations (Equations (82 -83))

q cnange in center of mass location measured in calibers (Eqs.

(99 -100))

T I (JI. k,..L- YTT Ji52
* t.J~r.-.. 2k

t time

N3(u, u2 , u3) velocity vector

U kmagnitude of the velocity

Uo magnitude of the velocity at mid-range

(xvX 2X 3 vector In the rawg co-ordi~ate system

"Y1' Y2 , Y3) vector in the fixed-plane co-ordinate system

C', lexponential damping coefficient of i-frequency

ru .ganitude of the sine of the total yav' angle

2 .2 2 ____01 rI_ 02

be - o + K2 0
I 2 2 2

2 2 + O2 Effective squared
.1 - K30  + 2K2 0  y

2 2" ;' e2 1(20 L

6
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aaxlzum value of 6

e orientation angle of plane of yaw

X" + X3 -u complex yaw

(0) + 'w dimensionless complex 'nross angular

velocity

v w - dianeici,!-. missile spin

dimensionless c-ri ate iytea spin

EV] average value of AV

P air densi~ty

0 - L + Olp phase angle of i-frequen.7-

n a:?ccos U3

(01 02, 03 angular velocity vector of co-mrdinste systeau

CD (wi, w2, w3) angular velocity vector of missile

A circumflex superscript vith the exception of A denotes

quantities in the fixed-plane co-ordinate system

tilde superscriptiI thbe enof±8 o 52 denotes quatities I

aerodynamic coefficients through the consideration of the

cosine of the yaw angle, 2.
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1. ~INMODUCTION

The free flight. spark range technique maeasures the aerodynamic

fo-ces and moments acting on a missile by means of very accurate

observations of its motion in flight. This process requircs a.

knowledge of the functional dependence of these forces and moments

on the dynamic variables of the motion in order that the Baluticn

curves to the differential equations of motion may be obtained.

These solution curveR are fitted to the motion and the forces

and moments calculated from the parameters of the fit.

This need for solutiom in closed form has traditionally

limited range tests to motions which are described by linear equations.

Since non-linear terms arise from both the size of the motion (non- t
linear geometry terms) und the presence of z-•zond order or higher
terms in the a"rodynaulc force expansion (non-linear force terms),

this ?Aeans that the range t.chnique is restricted to configurations

posbessing linear force systems and flying at small angles of yaw.

Strangely enough, a number or models have been flrcd In the BEL

Reat' -eo h either possessed known non-linearities in their force

syatems or flew at large angles of yaw and it was found that their

motion could be very well fitted by functions which were solutions

of the linearized equations. This seemed to imply that the parameters
of these linear equatirms should be ".verage values" of the
coefficients of the parent non-linear equation. It is the purpose

of this report first to derive the equations which relate these
average values to the non-linear force terms and certain characteristics

of the moti(xi and then to demonstrate the great value of these

relations by applying them to a number of programs which have been

fired at BRL. The success of this technique more than doubles the

values of free flight , angea for both the ballistician and the

aerodynamicist.

Finally the extensior "his method to the even more important
problem of the prediction oi I 1ng motion is dtcscribed.

94
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Tn oFrto invwnt iý;;tte tlhe yn.wirqrzrltw) of' mI..l:ovini" ut

ca.-.,7ei3 oi` yt. the catv-t Pq,4tlonn of ,notion mu,;t be deriver.
Anr 1xilort,-int !'-tune o'f this derivatlori 1103 in :Jhe Troplýr selection

of the co-oi-dinat. a~ystem ivd the kvnwnemic vw-a'e;,,3 This selection

shn-Qd betho z r' that. the resultirg eqtur.itioriz %re no sini at;i

pbcan-A -ea,,sonA~hly ,.opatilbl,, with the basic apcumption that their

L~ulutio% nray be approximateci by -t solution of the lincari~ed equations.

In othe-r vordc the non-linerar eq'.iation miust possess the unise gfner".l

chaxacteristics oý, th~e lirtea.rmiz eq~uation, i~e, , order of equatiors,

rnumber of variables, sy~zsetry of variolles, etc.

For arbitrary rigid bodies the best co-ordinote rystem in one

wftcze axes lie aloag -the body'-s principal axes of inertia. Since the

mass d~.ztrlbutions of' most mtissiles are rotationailly symmetrical about

the longitudinal axis of inertia, all trwnsverse moments of Inertia

are azsume: to be equal and all axes prpe~ndicular to the longitudinal I
axis are principal axes of incrti&. A right-banded Carxtesian co-ordinate

system with numbered axes will be constrained so that its 1-axis is

aligned with the missile's longitudinal axis and pointing ftorward.

C;, the angular velocityr vector of the co-ordinate system

relative to an Inertial system, will ha-fe ccuronents (fil, 41 %
while the aissile's argular velocity vector, a), will have components

((DIP (02P G)3) This definttion of the co-ordinate system, then, requires

that - a2 and (A3 - a)3 . If f and an initial orientation of the 2-

axis are specified, the co-ordizuate system would be completely determined.

In Appendix A the equations of motion are derivied for arbitrary values

of n,~ and we see that these equations would be greatly simplifiled if

fl~-0. For this reason we will make considerable use of a z.on-apin-nine,

co-ord~inate system for which the 2-axis initially lies in the horizontal

plane pointing to the left eand whose axial spin, f~l i~ identics.lly zero.

Turning now to the question of dependent va~riablet, it may be seen

that the major contenders are the Eulerian angles and te'e direction

Icofines. The question of' ccaipatability now appears. MlLhou1 su ý.:_I

linearized equations in terms of Ftaerlazu angles are symmetric In the

J-0



compoiT.nts of yaw, the corresponding exact equation- cannoiu be.

This is clear fi.z c hc definition of the angles. For this rearson*

we till C.•-er-C2 c.- ecIuations in terms of direction cosines.

At this point we muaprecisely define our variables. The yav

angle is defined to be the angle between the missile's axis and the

tPngent to its trajectory. If the missile's velocity vector, u,

has croponents (u,, uP, u3) and magnitude, u, the sine of the yaw

2 zu

angle is - and a unit vector lying In the plsane of yaw has

direction cosines (0, 3 Since we will

cousider only those missiles possessing trigonal or greater rotational

symetry, it will be convenient to represent quantities in the plane

normal to the missile's axis by complex nuzmbers. Witb this in mind

we define the complex yaw vector, X, to be a vector which lies in the

plane of yaw and whose magnitude is the sine**of the yaw angle.

, ". •- 1U2 + iu3 (i)

U

The cosirc of the yacw angle will be needed in this report and will be

denoted by A.

... (2)

As can be seen from an examination of Reference I the i.ulerian
angles also introduce considerable algebraic complexity.

In Reference 2, uI is used as e characteristic velocity for forming

d.i•nsionless quantitieu and. hence, the complex yaw of that re-
ference is proportioal to the tungert of the yaw angle. Although
this use of u l does simplify the center of aiss relationai, it else

introduces a number of complications which oui choice of u avoids.

Y ji



In a similar fashion the axial and transverse component- of the ang-lar

velocity mey be separated and vritten in ccmplex form.

wid
V u

(U2+ 1W )d (3)

where %I is diameter.

Finally we will select our independent iariablf to be distance measired

along the trajectory in calibers. If this vaw table is identified by p,

hem t is time.

The ineralized' linees if the seroiynamic force and
mount asmes that tb- t.'rce and mcment awe lineaz functions of X, -&,

and the•-•--d.: ttves in a non-rolling ,o-ordinate rystem. For symetric .

"a....es this assumption introduces e* lhteen coeffic,tents. If ve limit

oenselvas to on•l those coefficients "aming a measwable effect on the

M&Aic, this total reduces to ten arr,, ve have the folloving erpenstin.

1P p]'U'X
Y2~ + 3 - P d2 UL, 2 + ivK3P)'L +9 -K4 % + It.)]. 6

3.2N, - - pd uVKA (7)/

32

bez w 2 1)ae -,omponents of the aerody'namic fare 7

(71 721 , "3

(N 1 , W2, K3 ) we cmment, of the erodynaic ,.,

p Is afr dLnsit.

V --- , end ,
U

r, e 81 ioaless ssrodynmu- eoefficients..

12
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For this report we will only consider non-linearities caused

by the size of the yaw angle. Since symmetry4 :equires that the

aerodynamic coefficients must be functions of :X = 62, we will only

consider such a dependency on the square of the sine of the yr~w angle.

Two other force coefficients will be used in zhis report. These

a•re based on a resolution of the aerodynamic force in the plane of yaw

, .to components along the trajectory and perpendicular to it. If FD

it the component along the trajector- and FL the component perpendicular

to the tarajectory and pointing toward the missile's nose.

FL= --pd 2 u 2 (iC' I
"Aere 5 -VF--(8 i the magnitude of the sine of the yaw angle.)

In order to obtain relations between these two new coefficienta

and those defined in Equations (5 - 6), we require that the 2-axis

be in the plane of yaw so that X is real and equal to -8.

."" D" l '2  (11.)

F• L P l ÷ + IF2  (12)

FL
r
2 F

aremin 8

II
Substituting q-.ations (5), (6), (9), and (10) in L-j-.++e (11) (12)

and neglecting the X. and terms.

IEin
" " +i ' ' + J " ++ f J + " - : " " "1-I+ + __/_-_ / o"mo -___-___/ "• -"J,+

Sp/



Y.KýA+8 1 (13)

"KL iK KDA )

Fr=m Equations (13) (14i) the usual sanll yaw approximations

follow:

IDKD A (25

1LK KN K DA (16)

Finally If DAis eliminated fromn Equations (13-14i) the following useful

relation results:

ac.1K N -KH KD (17)

In Apvpendux A, the exact equations of motion for the aerodynamic

force and nwent. as defined by Equations (5 - 8) are deri'ved, (Eqs.

(A3, AlO0, A19) j If the effect of grav ity and the variati~on of spin are

neglected (J D - 0) they may be vritten in the following form
g

in the non-spinning co-ordinate system (~-0)

- Jim(48)

0(19)J

e a- 7 1i j +L X + * JL 17vT] 20

1 "L- JD+k 2 -2 ( £ SJA

'W%2 im

k2

A s xil ment of inertia

B is traunverse miwnt of I-nertia

kIs axal radius of gyratien in calibers

k2is transverse radius of grration !a calibers

IRAI
7'i



m is mass.

SMALL YAWING MITION WITH NO.I-LINFEAP MOMNT ABD NOI

In this section a very simple example of' non-l inear ysliing mroti-ofl

will be considered in some detaiJ. This is the case of' z, missile

f'lying at small yaw ard acted on, by a cubic overt~urning cr restoring

moment. Later the effect of other rion-linear for,-cc and movLýnins as

veil as the gcomretric non-linearities will be considered.

The bazic featuire of all the theoretical resultG of this report

is tne assumption that over "small" sections of' a missilets trajeec.ory

the motion to be qualitatively different from motion based on the

linearizedJ equations. For example, the yawing motion of a symmnetric

missile acted o.n by non-linear forces and moments should still be

epicyclic when a "small" portion of the trajectory is considered. The

parameters of the e-,icycle.. howevez, ,iould pr; '.-:ly be related to the

size of the motion. This assumption seems to be reasonable when the

non-linearities are themselves "zm~l.The experience of

ballistic-ians ac based on actual free 'Alight tests hnve indicated that

relatively long sectionz of trajectories and large non-linearities, are

still "small" enough for this assumptionm.

In order to illustrate this point. the data analysis of a non-

linear crag force will be outlined. Since this is the only non-linear

I ~aerodynamic force which ui, to the pre-sent time has been adccessfull1y
bandied by ballicticians, this digreission will. also provide a good.

background for later derivations.

tThe non-linear depen~eece of the &-ag for..e on the magnitutde of

the yaw is very well described by the assumption that the drag coefficient

is a quiadratic function of 8 where 5 is the siný of the total yaw angle.

K.lD KDO + KD82 b

15
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In Reference 5 it ts shown that the usual drag reduction for flat

trajec*.oriea* f,'v~olves the fitting of the time~ measurements to a

cubic in $O.stance.

2 (2
t - o+ a, + a 2 p + a3p3(2

where p is measured from the middle of the observed trajectory.t

It is further shovn there that under ccrtain reasonable approximations

the following equation applies for drag force of the same form as j
Equation (21).

t ~ ~ ~ ~ ~ i M o+d p+ 8 (p) (23)1noaW +a '+q'
where nois velocity at midrange (p =0),j

a3 is a constant related to drag dependence on Mach number,

I1,pw B2 dr dq, and

3
JD~igl:KD1

If the yaw is well described by an epicycle, then
i 02(2i4)

X .- 'L e + K2 0

K1 0 , aj, OJO 0 are real constants.

Although the expression in parentheses may be given more simuply by
2cos($ 1 ' 02)1 this form will be more convenient for the non-linear

yaw equation. For the case of zero yaw drag coefficient, we see, fromI ~Equations (22) and. (23), t~hatp 22 (26)

A-trjectory is said to be flat when the component of the grafational
force along the trajectory doed not change*. The yaw drag treatment may

be xtededto tet o-lttaetre fti sncsay

16
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r7t'
When the ya*;-±rag coefficient has a :,asurable effect, it does not

usually affect the quality of thiu cubic fit for segments of trajectories

as long as 10,000 calibers. It has been found that in this case the

same configuration flying at different average yaws will provide good.
2a2

cubic fits but differe.ý-ý value: of " " The problem is then to find

the quadratic contribution of the yaw-drag term of Equation (23).

Since all drag reductions contain a number of periods of the

cosine term, the cubic fit of the time history effectively neglects

this component of 52. With this in mind we look for the "best" quadratic

approximation to Ii(p) over the length of observed trajectory, L.

To do this we define an average squared yaw, 6 , so that the Integral
S~L

, •(p)'* (8 ) dp is a minimum.* 82 is, therefore, the best

; L

quadratic coefficient fron the standpoint of least squares. Differentiating

the Integral with respect to 5 and setting the result equal to zero.

L

p 11 (p) dp

L
62 -

(il)p 4dp

L

i Nate that this average squared yaw is different frm the more tradition-

j 2
ally used mean squared yw (X, + 2) ,IA. Although the average

L

squared yaw has better theoretical justification, the numerical difference
is usually not important.

i7
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5..- J 2I1/P) dp (27)j
T~)L

where I (P) (K,2  2) di- dq

- ~~+ + K2[e-(22 2~

K2 r2 r 2~) (

- 2a l2 (2801

The complete 'exoodanpsxmion fo a er campubed fob.tahed powe t erieg

te irttr inteexpansion of Eq.p) (2nce).

the fo alowngexoptisressi onfor is learily shernivable re.wer

10 18



Free flight tests6 have shown that the situation for the yawing

motion is qvi-te similar to this yaw drag case. Although the non-

linearities do not measureably change the nature of the epicyclic

motion which is predicted by the linear Lheory, they do affect the

values of the cpieyclie! psrameters. it is, therefore, necessary

to obtain relations of the same type as Eq. (29).

SSince the simple case of the small amplitude 'awing motion of a

missile acted on by a cubic static moment will first be considered,

Equation (20) can be considerably simplified. The small amplitude

assumption implies the approximations I = 1 and A' = 0 while the

restriction to a static moment eliminates the terms in H, T•L and T.

The equation under consideration, therefore, becomes

X" - i , - (Mo + 2 
-1

w hee -olutd- to*lnaie o-ofEuto •)Im

0 +KMB) 0(10

5

M2 NI-

8 
2

The solution to the linearized form of Equation (30) for a

gyroscopically stable missile* is an epicycle without damping.

).-K 1 0 e + K2 0 e (al

* A missile is groscopically stable if 2 >4%. All statically stable

missiles (M,<O), for example, are gyroscopically stable. Statically
-unstable milsiles: (l>3) are gyroscopicallý stable when their

-2gyroscopic stability factors, s v v , are greater then unity.a a

19
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where * 10 = 0± + 0 P p

01 ý, and

XlO, "0, and are real constants.

In Equation (31) the KX0 and • depend on the initial conditions but

the frequencies, 7. ara functions fo the coefficients of the linearized

equation and are independent of the initial conditions. The well known

relationd for the frequencies are

It will be shomn, however, that the frequencies of the quasi-linear

solution of Equation (30) do de.end on the initial conditions.

If the solution to Equation (30) is assumed to be of the same
foar an Equation (31), it can be substituted in ETiation (30) to
provide the following equation

i 22 +0.

+ o X20 a 0ý. '" • - 14 - M2 (K0• + (34)5

The tilde superscripts are used to emphasize that the 9 appear
in the solution to the linearized equation.

°.1
20
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Since we know that the epicycle is a good description of the actual
motion, the third term in Equation (34) which contains mixed frequencies
is neglected and the following two equations may be obtained.

01) M + M2(35)

=2()
k V ý-MO+ e2(36)

2 2 2
where 5,-, -K1 0  +2K 2

2 2 2

8e2 -20 2 0
Unfortunately Equations (35 - 36) are both quadratic equations and two

different values of each frequency are possible. This difficulty,

however, can be resolved. Since we are considering solutions close
to the solution of the linearized equation, the solution of Equation

(35) close to'lj should be selected and similarly for Equation (36).

This m•ans that the larger root of Equation (35) an4 the smaller root

of Equation (36) should be used.

2
Equations (35 - 36) show that 8 e±' the effective value of the

squared yaw for the i - th frequency, is twice as sensitive to the

amlitude of other frequency as it is to its own amplitude. The effect

c6es fro the cosine term which was omitted from the yaw dreg analysis.

For the yaeing motJon this periodic part of 82 can not be neglected.

In order to obtain relations similar to Equations (32..- 33), 14

0
is first eliminated between Equations (35 - 36) and then; is eliminated
between them

2 2•Oi • o i'- K10 - '"2

be
i (37)

III
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At first glance this derivation of our "equivalent" solution j
seems to be surrounded by an atmosphere of expediency and to be

resting on espirical assumptions. Actually this is not true. As we

shall now show our technique haj a good theoretical background and

requires a minimum algebraic work in comparison with other methods.
FinalJ]y it will be shown that the technique is not restricted to non-2Vlinearities proportional to 5 but can be easily extended to poljnmuial
functions oz ep.

The derivation of Equations (35 - 36) may ae-tually be considered
the first step of an iteration procedure. It is mertainly reasonable
to assune for small non-linearities that the first step of the iteration

has the same form as the linear solution. The error term,

1'211 ~ ~ -2(+2ý02~ 01)]

introduces mixed frequencies which are a characteristic of a non-linear

equation. The next otep in the iteration wvould be to assume a solution

S* of the form

LO, '0 e . 2 0e 2 +ic30e 02) i(202  01)
(39)

Substitution of ,quation (39) in Equation (30) would-grovlde four
coplicated equations in terms of the four. K 0 s and two frequencies

s, and our error term would then be of the form

OA - 2d2) i( .- 20) i(N01 - 7A
M2(,ei i --2+A -2.. + A,:e -T 4.A e" w here the A are fifth order ccbii=tinns of the K 0 •s. This process

then be further iterated to yield a series exp nsion of the almost

periodic solution of Equation (30). Fortunately as re ahall see, the
experimental results of this report show that only the first srepUf

this process is needed.

22
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Another method of treating Equation (50) which may seemt to be more f
elegant than the method of this report is that of Kryloff and Bogoliuboff.*

It will be shown that LWi s method provides the sante results as our direct j
substituat5on approach and requires more algetraic work. Kr_,ioff and

Bogoliuboff move the non-linear terms to the right-hand side of the A
ayquation and place the solution of the li'earizod equation •n these

terms so that they are functi.ons of the independent variable p. The

method of variation of parameters is then used to solve tVe resulting

inhomogeneous linear equation. In ord.-r to solve the differerntial I
equations for the parametric functions, the terms arising frc-. the

inhomogeneous term of the original equation are averaged over the two

periods of the motion.

As an illustration of this method we rewrite Equation (30) as

wheref(p) - + (6 2 ) + 22 + e2+ 2 2 ) K (0i

2 i(20,.~ 21
+ K•0  e

The parameters of this solution are the magnitudes K and the passe

angles iT.0 Differentiating Equation (31) -e have

~mi0'Z2e ^01 +(o1', 2o

If the last two terms are set equal to zero,

i?2
(r•0+ i0NlC•)ei~ + (Y-0 + i~oý ,)e 0•2 ,,O (42)

In Reference 7 it is shown that this method is fundamentally the same
as that of Van der Pol. They differ in the :*act that Kryloff and
Bogoliuboff express the linear solution in p,)lar co-ordinate form
and Van der Pol expresses it in Cartesian foam.

23

lLi



ththe rquation (4.1) f oy be differentiated a~sn ail to yield

•2 °• adterstdided nora n im~nr % ~ t

.- 01  1,0  20 + 2 ( 10 +± 1 0 1 0 10

Substituting EquationS (31, U h43) for X, X X" in Equation (40)

and sclving for K1 0 + 01 Kt•0) by use of Equatio n (4t.2),

Sio

/ M 2 f(p)e

If the right side of 1Equatior (141) is now averagm~ over a period of

02 1, and the result divided into real and imaginary parts,

K10 m 0 (1.5)

10 10 0  K 0
1 (16)

by 57MOntry,(.)

OýO 2 -rl 12(4'7)

Squatious (1.5 - Ii7) sbcW that the first approx~imation. to the

solution of Equation (30) Is an epicycle with no dauping but with

frequaencie which differ froin those of the solution of the linea~rized

equation. The eiurrections to the frequencies are the 7 agiven by

Equations (1.6) and (1.8).

2 a.
I Y-0 22
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K 2 +~ 2K 2
20 0 (49)

In order to compare these results with Equations (37 - 38), Equation

(248) and (49) are first added and then multiplied. After making

use of Equations (32) and (35), the following relations may be

obtained.
K2

10  0 t
*1 + + '1[ PO +K~ t](50)

K, 2 (~2 +ý;' 1 ?K'2

MO +)2 0;o + 22

But if second order quantities are neglected, Equations (50.- 51)"are

the same as Equations (37 - 3,). Thus for twice the work we get the
saw result.

An a further basis for our quasi-linearization technique a special
form of Equation (30) will be considered for which an exact solution
is known. This case is that of a statically stable non-spinning missile
in Olanar ý-wing motion. If X ie replaced by 8 e where e is the

orientation angle of the plane of yaw, Equation (30) assumes the fur-

5+2 8 ). 0 (52)

vhere M 0. For planar yawing motion 5 must go through zero and, hence,

"the two amplitudes must be equal (Y0 a K0 2 K). Finally according to
Equation (3T) the frequencies for a non-spinning missile differ only in

siapn- - 0). The quas;-Aiurear solutioa of Equation (52) is

a special form of an epLicycle,

8 -K (e 1 +e I 02ie

8m Cos (¢'P + 0),

25
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for which Equation (38) reduces to

2 3 2
No ~M -9j"0 M2 (54~)

where -2K. (maxlmum value of 8)

00 X10 -e 020-

k The exact solution at Equation (52) Is an elliptic function with

period determined by acumplete elliptic integral of the first type. Thus

by use at a little alesbra and a table or c.omplete elliptic integralsi

it is possible to compare the periods predicted by Equation (510 with

the period of the exact solution of Equation (553). In doing this two cases

must be considered:

1. A moment which grovs faster than a 13.near noment (aO

2. A moment which grows slower than Alinear moment (M2> 0) end,
IM2~

therefore, actually changes sign for

Althouagh a quasi-linear vapprximation may be reasonably good for

reasonably lawge values ofwhen is negative, it certainly

cannot be good for values near unity when M2is positive.

With this in sirad we may now state the surprl.'q 7r- 'ALI to of this

acmparison with thot exact theory. For negative M..'s a *quation (82)
predicts the periol wiOth less than 1% error whenever the non-line j2,

romet contributice it leas than five times, the linear momnt

For positivP W21s this .?rror will be less than a percent wVh3en the non-
linear inent contribution Is lesis than one-half the linear L .ent

~I ~ j4 ). n tULU cae the error, however, rises quite rapidly
fcw larger anglis. An a result of these facts It Is reasonable to make
use of Equationia (35 38) vilth consider.iblv optimism.

26



Turning now to the question cf more general non-linearities an

examination of the algebra used in Equations (35 - 38) indicates that

sny polynomial function of 82 could be used. In order to obtain

the effective values of higher powers of b2 we look for those terms f

.2in
in 82n which upon multiplication by X yield terms in Fo e or

i02
K0 e . Clearly the only terms which have this property are

constants, ei(0 2 - 0i), and ei(01 " 02). In the binomial expansion

of en the only term in which these e'ponentials appear are various

multiples of the cosine, i.e. [eKI0  + e (02

Althjuj6h the constant terms are unaltered in all three forms of effective

yaws, [82nlel, L2n]e2 and. , the cosine erm makes different contri-

butions to these forms., For ~2n~ its ~ontri 1ti 2 ,for [2

iis 2 52 tisC c(' o 0 2
it s 10 , and for E8 n ite 0

As an example of this algorethm we calculate the three effective

forms of b4.

FrCM Equatirm (25), 2
' (e 1 02) i(02 01)I-+ - + • (55~)

where a K1 2 +K20

K10K K20

The exponential form of the cosine allows an easy selection of the

constant and cosine terms of the expansion. These particulT terms of
the -xpansion will be Identified by brackets on 61

- + ~21 + 2& [ ] (56)

vhere) b(e + )

In order to obtain or.3  ke 2  I e, K2 IL 2,. [€']- -~

. 0 respectively should be inserted in the empty brackets of

Equation (56). 27
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e7f

[8"]el=a + 2b+ 2a Lo21 (57)

8'ie a2 +2b 2 + 2a [K.oJ 2 (58)

84 e a 2 +2b2 + 2a I 3o 1ic 2(9

In Table I values of 3 w-e given for all value of n between

one and eightC

1&. GEOWMRIC NON-LINEARITIEs OF LARGE YAWIANG MOTION

The basic quantities measured in free flight are the co-ordinates

of missile's center of masm and the direction cosines of its axis of

syximtry. Since the usual formulas5 relating the direction cosines
and the motion of the c .m. to the complex yaw X. vere derived for -1al

yaws, the exact relations have to be derived for this report. In this

Z derivation we will find it convenient to keep the 2-axis in the horizontal
Z" plane (fixed-plane co-ordinates). Unfortunately these co-ordinates are
* not the saw an the non-rolling co-ordi.nates (V 0) and it is, therefore,

- - necessary to calculate A for these co-ordinates. Surprisilngl enough In
Reference 8 it is shown that not onl~y is v finite but it has a non-'zero

average value. In our development the cumbersome Rulerian angles of that
repot will not be used and the desired results will be obtained in a
soemwhat simpler fashion.

Co-ordinates in the free flight range system will be Identified by
(xl,12,x,)and in the fixed-plane isystem by (y~l' y2, y3 ). The range

mystext ban a 1-axis pointed downrange along the Intersection of

horizontal plane and vertical plane containing the gun. The 2-axia lies.
In the borzonta.l plane pointing to thae left and the 3-axis up. The
fixed-pmne aco-ordinates have the 1-axis along the minsilells axis, the

2-axis in the horiiaital plane pointing to the right, and the 3-axis

down Finll te no-opivinc--orl-tnates, which are our fundamental
co-ordinates In the theory, have the 1-axis along the missile'sB axis,

the 2-axis initially pointing to the right in the hori.:oncal plane

but moving so that iA zero and the 3-axis fixed by the rigzrx-i--.d

28
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In order to calculate the Complex Yaw it is necessary to know ther

components in the ranige system of the unit vectors., alon the

fixed-plane axes. Siz.ce thu fixed plane '-axis lies along the missile'sa

axi of symmetry, cemponents of the unit vector -1are (nl, n 2 , a,) where

the aq are directiou couines of the missile's axis with respect to the

range system. The restri.ctionl of the fixed plane 2-axis to the hc--izental

plane in equivalent to the requirew~nt that the third component of 2

be zero. This together with the requirewent that it be perpendicular

to the 1-axis and pointing to the right completely determine the

emponents of the unit vector along the 2-axis.

2 n,

+ n5 2 + D~2

Accordi~ng to the right band rule, the third unz~t vecter 1,ý cq(al to the

CrOss product Of the first two.

c-ox -~ 0)

In~3 n2~3
I' .-- , , 62

With this Information the matrix equation for changing frcm the rangS

coordinates to fixed-plane co-ordinates can now be written:

Y, nU2 n3 1'

~1 D2

/2 2

nin3 Y 2 --

( Y3 + /
n, 2 + /



-,OPP, P_"." t 'T1 6II

if the vector (±l, 2' i 3 is inserted on the right side of Equation (63),

the left, side would yield the components of the velocity vecrtor in the

fixed-plane co-ordinates. These co-ordinstes will be denoted by the

Vymbols (ia1 , 021 a) nd the symbols withaut tne circumflex will be

reserved for the non-rolling co-ordinate system.

A - n2 ii - Z1l12 6)

nln3 Xl + n 2 n +n
A 3 1n 2)"2* (65)

*Dividing by the magnitude of the velocity vector, u 4I= a~ +

JI23/ and simplifyin~e, wecan obtain the followingexrsin

for the components of the complex yaw in the fixed-plane ajystem:

A ~dx2
A n2 nl j (M)

u*2 (66) .

+ +

n dX 2 + (2(dZ

U3 + U2 3(.u (67)

fac tbt 2 1 - 2, 2 n3, e can obtain the first order approxImation
of the yav copnet

31
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Turning now to the problem of computing the axial ongular velocity

of our fixed-plane co-ordinkites, we first must state the definition of'
tbe angular velocity vector in terms of unit vectors along these co-

ordinate axes e~1' 2' 3

1 ' 2 *3

W3 /2 '2

3. +1 (7 1 ) (9)

Odd

where ( 'dentes

Substituting in Equation (70) tle co-ordinates of the vectors

Ilandt from Equations (U1-62) we have
2 3

- I (72)

"___ 2~3 n 3(n1̀ n 2 t lie,'

+ nl2 2 A2
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nA A 3t
- (714)

If the angle between the miazsile's axzis and a vertical axia is

denoted by '+, then n,~ - coo * and Equation (714) reduces to

' - t - cot (75)

Ahc sfxd ntehrzna lnisitga hudb eae
Since p2is the axigu.ar velocity of the missilet. axis about the 2-axis

A
to *.Integrating p12 as given by Equation (73), we see that this is true.

K2dp =arcoos n 3(p) - erccos n 3(0) (76)
0

2Ldp + j0(7
0.

Although Equations (75) and. (77) are very useful for the numerical
interation of the complete eT=m.tions of motion, we will find. Equation

(72) to be much more lent for the purposes of this report.

If the flat trajectory a' ro~imaaiu x a yd. is Uaed, a. first order
A

approximation of v may nov be obtained from Equations (67), (68), and.

vn4

At (78)

A good. approximation to the yaw components Is an epicycle.

f2 X-1 0 can + 20 cosý 2  (9

A A
X3 K1 0 si 0 + KC20 sin 02
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wehere K 0 are constants and

A
are lin~ear functionls* Of P.

)6 3)'2 (K1 sin +K in If,- K10  sinl X20 ý2'

2 [2 + , 2 x] + r0

+ (+0)Ko osin )l sinl~ S.

From Squ~ation (81) it can be seen that 1% has a non-zero average 'ialue

of- .1 [ 1 + K2 2 (IFortunately, for amall Y&Ws., this can

be nes;ect-4.)

Turning to the Small' trajectory term T we consider only the effect of

gravity and lift force and Obtain the following relations for constant

velocity U0 from Reference 5.

rU + ~L7sin ~1. +r hsin~ (82)

Co + X20can (83)

8is Tb" acce~lerationl due to smraity

JL1EK

A little slgsbreai midpagtion results in toe relation tbat

eir1cIumf2*1 Wn the I's is to Iindicate that tbe~'e angles are

ApszdIn Idw fled. pmlse system and not :in the jwoc-rollifl

system of Section 2.

**TA LS& to tim assumption of a flat tredectmry

77



2i 4
JL -6Since for most missiles ~ ~10 ,T is effectively the same order

as K io4and we need only consider the fou~rth order terms which are
independent of the trajectory to obtain a complete fourth order

expression is calculated in Appendix B.* If we add T to this and defimeI

r1to be the "D. C. component" of V, we see that
2 2 22

1 2 K1 0 2 202

With these results we can now calculate either the exact position
or the average position of 2 and 5-axes of the non-rolling co-ordinates.

Since our fixed plane co-ord-inates are turning at an angular velocity of
9 with respect to the non-rolling co-ordinates, we have that

As it shall be shown latmr, v, in Equation (86) may be replAced by P3fo
the data reduction of large yaw firings.

The effect of large yawing motions on the results of Section 2 mani~festo It-
self in two wwVs. First the distinction between the non-spinning co-ordinates

and the fixed-plane co-ordinates becomes important. Accordi 'g to Equations

(85-~86) these co-ordinate systems rotate with respect to each other with a non-zero.

*In Appendix B the frequency for pure precessior is compared with the
approximate relatior based on thi'3 expr~asion. i r fj*As can be seen

In Fig. 15, the agreement is good for 5 sin 450.
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ayera"{V I 1 and Oý denote the epicycle frequencies for the

range fixed-plane co-ordinates, it can be seen from Equations J(85) and

(86) and the assumption that the motion in fixed plane coordinates is

also epicyilic that*

+ [A]4, YJ(87)

The second effect vhich is the appearance of the cosine of the yaw angle,

MAY be seen in the equation of undamped yawing motion in a-e non-rolling

system. This may be obtained from Equation (20) as

L7 o- (89)

-2* 2

I~ ~~~N k " ", % •
I 3t~ No uk -2 ) t

SEquation (89) differs fr= Equation (30) by the X term and the presence

of the cosine term in M. In order to obtaln the correct form of Equations

1•')'(37-38) e mnot derive a good approximation to

*i rvil spinning,,yodels vig ya quatiun (88) can impose a

A"thue product of the rates in the non-rolling systam .vuld be negative.

36N
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Inserting Equation (25) ir Equation (90) we have

"- . ((01(-2), 0 0"

K, ~ ~ ~ r2+j01 0)

0~+ X20~ [

Substituting Equation (91) in Equation (89), and operating on Equation

(89) in the same way as we treated Equation (30), the fqlovr.ng two O-
equations may be obtained from the coefficients of K 0 e and 1(oe20
respectivelyel •"( •

-'Ol~~~ ~ + 0+ re 2 .(1 )( 7) o (92)
012 1o 2 (22)

+2 MO+ M2 -'1(-'!! o (9)

Eliminating first M and then; between Equations (92.) and (93),

1~0+ [~2oi 202o] ;+M * 1 0  K2001 +02 L +K C2 M2

ý11. 021 +1 [,,021 + K2o0; M.o + %2 + (95)

Thus the geometric non-linearity of Equation (89) introduce correctiOn

terms to the left sides of Equations (37 - 38) of the previous section

and replaces M2 by M2 = M2 " 0 in those equations. If the frequtncies

in Equations (94 - 95) are replaced by their fixed plane values from

Equation (87 - 88), and fourth powers of KXI's are neglected, Equations

(94 - 95) MY be written in the following useful form.

E1,

I %I l+ 102 1r-i Oj2ý

1 2* 2 ~ 7
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An examination or Equattionl (97) sliuvs that the effect of a large

;wrcentags change in the freql~enct~a inplied byt Ernatifos (87 - 88) is

almost completely Cancelled when the terms in the cosine Of ýOLV are

properly handle~d. As a check on the deri~atiofl of Equations (96 - 97) thtY

are derived in Appen~dix C directly from the yaw equAtion expressed

in the fixed-plane bystem. This derivation shovs that the assumptionl

istpl~ied in Vqaut~ons (67 - 88) La equivale~nt to the basc ..smumPt~ior.

underlying~ this whole report.

5. UPEKMhV.NTA ?. 1SULTSi

Tr Section 3, a very simple exxample cr non-line~ar yavin. motl.jn with

two 4egrees of freedom is considered in great detail. The Very ARMe

qiuasi-linstar assujaption may be applied to a much more complicated system.

In appendices D and E the yawing and swerving notion of a missilt for

which ail aerodynamic coefficients aer quadratic functions of b is

considered. Equatione relating the paramieters of the epicycle

appro~ximation (frequencies and dampirg exponents) to the coefficients

of the parent non-linter equation and the amplitudes of both modes ame

* derived. Since these relations are essentially approxlmationsi, their

* vale* mot be determined by weiU4sr numericca or %ex~pri~wflt^1 checks.

A good rbeck an these approximations can be obtained by moons. of

the actual free, fliot notion of a miosile acted an by non-linear forces

wAd mamets For this reason various results at firing towsts an NMI*a

*lark rangos9 wore examinoed for possible verification of the q~uasi-liZ1Ow

bypothapsi. Ts "maesut of this investigatio'1 worm quite encoureging.

The affett of a cubic static sment oc three different programs was

first considered. These programs vere a finned missile program (elm

matars 1 )s a body of revolution program (Army-N&YY Spininer 1Ro~*t

Vragram6 )# and a large law body# of revolution program firdd by 1.

In the finned missile program a Zre# flight rant* value of xxWas

emepated f rom the product of the frequencies. Accordtng to Squation

(38s) wAd the def initions of M1

38
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Thus the range value of K, as obtained from an epicycle fit of

individual rounds, should be a linear function of the corresponding

effective squared yaws. In Figure 2 the range ialues of I are

plotted against 6 and different linec for earh configuration testedeare draun through corresponding points.* The linearity exhibited by

these experimental points constitutes the first check of the theory.

It should be emphasized that in all cases, epicycles with damping

were fitted to the data and although the exponentillly varying Kilt

actually should have appeared in the ealculation of 52 they were

approximated by their midrange values K i0 'a. The approximati-n is

implied by our basic quasi-linear assumption.

The Army-Navy Spinner Rocket program consisted of three model
lengths each with three dif¶ferent center of mass positions and fired

V "at three Mach numbers. A maximum of twenty-seven values of K. was

thercfore possible. Since for each case at least four points with a
reasonable qvta& in % are necessary for a good determination of

it was actually possible to obtain only sixteen values from a careful

analysis of the 126 record rounds of jhe progres.

These values with their standard errors are listed in Table MI.

A sample plot of the experimental points for the 9-caliber model at
Mach number of 1.8 is given in Figure 3.

For some of the Mach numbers and configurations, wind tunnel data

taken by R. Krieger ve avtilable. The data for the overturning

m nt wvre fitted by cubics and the cubic ccefficients (k 2 ) are

listed in Table II. At all .seven poin'. of comparison the agreement

is good.

effective squared yaw assumes the concise for. 2 + 2 2

In Reference 10, the t' were erroneously plotted against

a 7 1 0 2 and, I , the slopes obtained. in ' ta. .:.rt are

-actually

V- /
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TABLE U

KU FOR TBE ARYJA-NAVY SPINNE~R R~OOM

MahForward 
Middle Bear

Number Center of Mass Center of Mass Cne fMs

Rge Wind Range Wind Ranige Wind

TRangl Tunnel Tunnel

Fpie caliber LAngMoa2e15

1.3 2 -3+1 0 1 +2 3

1.8 ~ 14-7 
3; 1 0

Seven CaliberIL~ongdels

1.3 21 +1 - 5±; 3 5
11.8 . 12,;1 -L1

2.5 - 28l -26 1

Nine Calie _Long odele

.. 35.l.14+ .01*

1.8 5+11 +137.1.8~- 30;4.6
2.5

The cmnt~er Of VMS for these RCM waodel is .2 cal. rear of its

U&M I "im

1,0
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Since models with .hr~Pp etffer•. renter of masb locations were

fired, a second check is possible. If the normal force is expanded

as a cubic function of 6, the usual center of mass relations provide

that

%(q) KM + q no (9

V8 %M.2 01 qIN52  (100)

where Ni(q) are the moment coefficients for a center of mast located q

calibers rear of the center of mass for the to's.

This means that the % and % 2 's for dafferent center of mass

locations are linear functions of location. It was possible to measure

three values of K 2 , for only one configuration and one Mach number.

In Figure 4 both K0 and KM2 for this case, are plotted against center

of mass location. The fact that the cubic coefficients as well as the

linear coefficients fall on a straight I1ne is another point in favour

of the theory. The slopes of these lines are K.2 and NL respsctively.
6 0

For six other cases it was possible to compute , 2 frm two values

of KM2 and all seven values together with the correspnding linear

values (No ) are tabulated in Table III. Once again Krieger's wind

tunnel data were analysed and it was found that at all points of

comparison the wind tunnel results were in good agreement with center

of mass values.

In Appendix D, it is shown that the lift force and Magnus force

coefficients may be directly uoaa.axe4 from the swerving motion when it is

large enough. According to this appendix, most of the swerve is associ-

ated with the lower frequency and, hence, the raL* values of K1 and LA
for each round should be plotted against the corresponding value of be2 2

A sample plot of this process is given in Figure 5.i f 141

•r

N/



TABIZ III 1 2
I

Number 0NO____________

Center Owerve Wind center swerve Wind

of IWIs Tunnel or mass Tunnel

rive Caliber Yodtls

1, 98 99.92 T 5.2±+ .2 5

18 1:13 1.13 1.10 -1±2 
7

seven Caliber Models

1.3 1.02 .98 -- 20 10±1 -

1.8 1.13 1.1, 1.08 12 2T9 10

2.5 1.21 1.20 1.1 827± 8

Nine Caliber Models

13 1.06 100T 1715 +2

1.8 1.i1h 1.23 A~.±i 15 ±2
t '3 1.31 1.20 34±

42-
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In order td caclt K2 from CL,2' it is necessary to expand,

Equation (17) in powers of 5 2 and Compare CoefCicients

No1 m +K Do (101)

Using these relations it was Possible to calcla~te eight values of
both KNi sad 'C,.2 from the swerving motion and these are giv'-n In Table

II11. With the exception of two values of KN1 2 for the 7-caliber models

the agreement is remarkable. The reason for these two discrepancies
is at :!resent unknown.

Althouxgh the lateral displacement due to IYAgnus force is about one
tenth that due to lift, it vas possible to make two measurements of

2*The experimental points for these two cases are given in Figure 6.
Pr Axellent, Internal agreement of these quite delicate measurements

is extremely gratifying.

Finally in Roecker's large yaw program it va.j possible to check the
treatment for the geometric non-lirkearities * In Figure 7 as

calculated from Equation (97), is plotted against be . Here ye see

that the data is essentially bilinear. Each 1ýne corresponds wo a4 cubic segment in the momnt plane. if the parameters of each cubic
are czilcu~lated from the slope and intercept of its corresponding line
in the 1(1 - Be2 plane, they can be pieced together to for.- a smooth
amoet plot. (Figure 8). (An examination of the spark. shadovgraphs
revealed, the fact that flow separation occurs at abo-ut 210 sand this

explains the sudden change in the ment curve Lt this point.) In
Figure 9, )L~ io plottod versus %e2 and the corresponding lift force
plot Is given in Figure 10.

Since Vind tunnel measurements for this conf~.guaUz.- had. been
madle by W. Bearfd, a comparisoa vas possible. Tbe data vas divided
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into angles of yaw leas than 210 and grcater than 210 and pairs of cubics

fitted. The resulting coefficients are compared in Table IV. The

ogreement is excellent.

As a result of this rather spectacular success with the non-linear

stat..- momnt, the more difficult problem of Magnus and damping moments

vas then considered. In Appendix E it is shown that a quadratic dependence

Of XTand KM on 8 so affects the damping of the epicycle that the

usual linear formulas f or KH- and. KIT are actmlaly the following

combinations of coefficients:

* ~ ~ 2 2)
.~0Y O8 AADl - 2

rag angeE ~ *~2e2(oI.

(13

-T e I)(C0 2

~~~~~~ #22 22 #2td nal ae

wher wer

coefficients of %~2 vere small and this quantity was poorly detrmined.

%2was theefore osttod. fro Equations (103-104) and they were fitted

seprs~tely to ran,,p Yamsn of K~f - K n T

Blae thin maisaInukt depende on the Camping espzents and henceIIs quite dulicate, it vas pousible to obtain only eight val~ues of %

fram u rW and four frost~-NM These are listed im T-Nl



TABLE IV

Large yaw Results for M 2.3

~D,2 KMO KM582 CLO KL52

Wind Tunnel 1.85 .825 - 1.1 1.03. 4.0 before separation

Range 1.82 .829 - 1.0 0.99 3.6 J sin 210

Wind Tunnele. .729* 0.0 1.i45* 0.0 > fe epiaif

Range .719* 0.1 1.43* 0.1 4 sin 210

* K-eluted at separation
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TABLE V

Mach K2 KF cpF KTe2 "T82  "T82

Xo. %2 %2 6 2

C.M. Swerve FCM )CM RCM

Seven Caliber Long Models

1.3 1 171 -16+5 -5+ --

range

(KHKM) 20 +14 - -

range

1.8 22 - .8"Tre 34 + 16 0 +1

rantgeS (KK" M)•= "25±' _ --1 .. .

2.5 19 - 5.1 - -T6r+ 5 -- -6 _+3

range

; (KK. M) - 28 _+ --.. .
range

"wrine Calietr •ong Models

1.8 12 - 3* 6. - 29 + 2 -- -5.2 + .2

KKA) r 2ange -,6 + 3 .

* r 2 for VAoh nuber 1.3 vs gven in Fr 6 s 8 + 1.

NOL Wind Tunwnl ueuamuvrwto were i by Luchuk and SpBprkI'11 for 7

"aiber nodel St N beteetn 1.6 and. 2.5. Accordng'.to bz-h -esults, % "-•'n,o cr 5'4"
2 2

.//LI . " . ' , ...- : " - " . .•/ ;:--• -: ' .- • -f.- -----

... .. , .. ... .. ,: .. / _. .._ . .. . .. . ... . . • . _ . . + _6. ..



and the ag~eem'ent between paiis of is within the standard errors.*-.

In Figures 13.1 12, a pair of plots of experimental points for K
"Transe

and (YH- K.M) are givenm.
range

7 ~In ull four cases 'jalua ell "I" -. for two center or mass locatio. s
3,B

were obtained sand K, 2' a and CPF 2 a were computed from theae. At

the Naval Ordnance Laboratory, Luohuk sand Sparks 11have made wind tunnel
measurements of these quantities sand their results, as given at the bottom

of Table V, are in reasonable agreement with flight tests. Finally i-ý
should be noted in the Table that at one point of comparison of centtz of

mass sad swerve values of KF 2' ( the seven caliber models at M a 1.3: the

agreement is good.

As a last example of this quasi-linear technique we will consider 1.
body of revolut ion which displayed an extremely non-linear M~agnus Pmn..
The range values of ITfor this model were obtained by E. Roecker and are
plotted versus Il8 in 711guze 13. Although these data are fitted by two
lines, only the first line is well determined. In fact if the fourth p0' it

from the right were neglected, taie ls~rge yaw values would be reasonably
well represented by the dashed horizontal line.

In Figure 114 the corresponding cubic segments are plotted and compared
with a DRL wind tunnel curve obtained by A. Platou. The good qualitative

agreement for this strongly non-linear moment :is remarkable.

Gince the quasi-linear relations have been so well ve*ified by
experimient, they should be quite valuable :in the Important problem of the
prediction of missile notion from a knowledge of the forme and moment

I' I curves. Ti±" application of the quasi-linear teo~hnique is described in

more detail In the next section.

Thus an observed dependence of (K m) tn, ''ad~tude of yaw is
KE rangi

not recessarily due to non-linear damping nmmants but may be -4ue to a
mon-linear Magaus momnt.

1&7Ii,
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6. PREDICTION OF NON-L MAR YAFING MOTIGN

Although the application of the thtory of this report to range data

analysis enhances markedly the value of spark ranges, an even more important

appli.cation i:s the pradiction of the yauing mction of a missile acted on

by non-linear forces and moents. The experimental results of this report

indicate that thiu inverse probler. should be successfully handled by the

same theory. In this section ve will outline the procedure for this

prediction problem.

First the sizes of the two arms must be obtained from the initie&.

conditions

71 0m(-,.e.i0l)+K e ' (02i 2 )~ (106)

I -

In arder to take care of the effect of damping the trajectory should

be divided into intervals over which neithe' amplitude changes by more

than 50%. The length of the first interval may be estimated from the

linear d&aping. If the %uaculated quasi-linear damping is much larger,

the Intervt may 'then be shortened and the process iterated. The lengths

of the other Intervals should be determined in a similar manner. Values

of frequencies in non-rolling co-ordinates, can now be computed from

Equations (92 - 93) which are simple quadratic equations.* ( may be

computeA from Equations (87 - 88).) Then valuesi of a my be computed
"from Equations (E4 - ES) which are even simpler linear equations.*

F* or ease of calculation the linearized values of as and a a my be first
placed in the coupling terms arising from the non-linear ;4ow.try and an
iteration performed if needed.
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*oe.2

If a more complex polynomial dependence of KM and ,T on2 is

recaired, this may be handled in the following way.

Let

n

k =0

Then Equations (92 - 93) and (E, . E5) take on the followiln slightly

more complex form:

01-' ~ +____* , .'( nc
"2 , (• 2 k)aL 2 0 2 = 0 (109)

k .0

92 ('7' ek) 2

-~ ~ ) O 1 +Tkb
2 ). - (C H 17l2 + K20

2 )01 +K2 2

- 0)1o2+ -4x~2 
+2 OP)(11,,€a * o p( . ) =u. - 'Fa

2 21 2
)0

Ja2k20 + 2 60L(00 O +'2 +

SEqa. (92-93) are also slightly modified by the presen::e of damping~.

20 9

:k, yw -e°

IIII

J qa (9-3 r1 losihl oiie ytepee:, fdmig

/4



2 2
- Lb ( O-0)K10

2 + Qa(x~i 10  + Q2 K2() (112)

+ (...~---K
0

w ee M2 k B2 Xr102

82k od n_

'rk M'L82k kl2TBi 2k)

and those te-rms ap-pearing in the ri~ght hand, summations which have powers

of 5 greater than 2n are neglected.*

It should be remembered that these equations are derived on the

ealsption of a flat tralectory. The complications introduced by gravity

/, e4. eCOnei'¶'ved in a later report. In any event for a large class of

problem this simple procedure should alim reasonably good prediction of

the motion of missiles acted by non-linear forces.

*1. SUNIIARY

1. A COUVenient expansion of the aerodynamic force system for large

yaw has been obtained and the necessary geometric relations for

these large y•aws derived.

2. Relations for parameters of a linear equation which is C ldivalent

to the act1ua." non-linear equation have been derived.

3. These relations have been tested by actual firing tests and

Sxceflent internal consistency has been observed. Whert wind

tunnel measurements were availatle, good agreement has been

btain&ed.

The effect of the terms in which are higher order than b on the

JL X term in Equation (20) has been negle-zted.

50
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I.The &ppt',s,.rLi of this technique to the predicA.oL; of the

YwA-4 motionl of a Mi~ssile a~cted on by non-linlear forces wid

mrsments has been describedi

C4A7A

CHARTES H MIJRP IAHYL
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ArITMINDX P: Derivat ion of' Z~quptions of' Yawing Motioai

"in thin appendix the exact equatio,i of ywd,,ng rnction will be derived 4
in two steps. Firat the t-eg e1u÷tion which governs the magnitude of

tho veloclty vector will be obtained and then the equations for the

tri.nsverse velocities and a-gular velucittie comp,')nents will be derived.

By means of these equations tne exact equation for the complex yaw, L I
X, may be formulated.

I.e fundamental force equation f-r the velocity vector may be

written in the form:

td
dt

where is the aerodyramie force vector,

T i the acceleration due to gravity vector.

If ths equation Ia dot mUltiplied by Z,

where ii the derivative of the scalar, ui.

Dividing Equation (A2) by Tu2 changing to the independent variable p "

u dt, and denoting the trajectory ecomponents of t and • by FD and 6T'

we can obtain the final forw of the drag equation.

*~f FIDd +I

ft . D + jd
-- 4

iDg

*..g
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Turning now to the consideration of the compon~ents of the
velocity and angular velocity vectors in our moving co-ord~inr~te system,
we wri ta the equations for %.he conservation of linear and angular

momntum in the foillowing forms.

where angular momentum vector

A - malment of Inertia

B -transverse momnt of inertia
V-aerodynamic moment.

* In order to calculate the derivatives in Equations (AI- A5) for
ccmpoaients in our moving exo-ordinate system, a useful vector identity

*for use in a moving co-ordinate system with angular velocity will be
stated.

+i 1  (A6)

A~pl71jg Equation Ab to Equations (A' A5) withA ai- 2l , a). s,)

a "2+ a, ul al V- 2 +M0T

&5 w.!1-N (A8)

BS+V2I 2AlX
I5
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eMINIMUM

Since the axial, component of the angular momentum equation is uncoupled

from the other components, we consider it separately. If Mis replaced'

by its definition, Equation (7), the equaticu for the axial spin nay be

written in the following dimensionless form.

~u'~ ~~2 (

w here v - -U

UU

Substituting in Equation (A9) for Vfrom Equation (A3), we can 'write the

final form of the roll equation.

V .(D - J)v (Al.0)

-2 -
Dkl-
whrDJD~k JA

In the treatmnt of the vector coisponent. in the plane perpendicular

to the missilefs axis, the rotational symmtry of the force system may be

exploited by making use of complex numbers. Multiplying the 3-components
by i and adding to the 2- componenta,

P2+13 (All)

- (~. ++K (A12)

in the analysis of this report, the s'mal chang in v predicted by
3quation (*10) will be neglected and all derivations will assum

assistant spin.

'T W5".



If EquationR (All -A12) a-e nov written in terms of the dimensionless
Avariables, p, X., I, gst v, V, the following convenient form may be

obtained

+ ' AY+I (F 2 4iF 3)+ (g2 + ig3 )d 13
mu? 

u

9 + (2'+ iv*) i rvi M24'M d2  A

where X ua2 + iu3

ul

U,

U

A A

The aerodynamic folrce andmoment may be expeanded by means of Equations
0( 8) sand Equations WA3 -A14) maW then be simplified by use of

Equations (A3) and (17).

L jj .+ .~l,) +, +7pjX l+ A W

- (V t ~2( VJ - JM))' + ( - -g 1[2 j
(A16)I - ik2 

2 jM& + 1W.

2h ruigo in y was a correction introd~uced by krofeseor

McShane in order to make the treatmenit 'nt gravity more accurate.*
SeaRference 12.
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(s +B)dJ

transve~rse radius of gyrationl in calibers.

RnIeference 3 it is shown that the only force coefficient uhich

hasa n appreciable effect on thr- 2.iiearized yawing Motion is the lift

coefficient jL. For this~ reason the other forte coefficielyto ini

Equation (w1) vill be neglected in the derivation of the yaw equation.

-qaif (1)cn o e re-ittn in a imuch more conveilient forn%.

Differentiating Equation (All and solving for i4LJ.

If Equation (A3.6) io =Ilt±-plIjd by is and Equations (Al7 is1) are

used to eliminate Pi and Pi. the y&w equation may be obtained in the fOU

requ ired for the Meort.

+~3M4+'TS ir.(+ 6 4Vj (A19)

- G- ev)-

vbere I a -J JD + k 2 -H AJ~d

T - A(L- k., T1
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APPENDIX B: 4th Order Approximation of v

dX2 dx3
If the trajectory terms are neglected = -- 0), Equations

___,

(66 - 67) for the two components of yaw in the fixed-plane system
reduce to:

A r2 n ~n2• 2 (1i)

A F n /2

22 (2

+[nn

V-, (A2 2 )2

A n y l f (El2n)

Equation (B1) is now solved for L 2 and n, replaced by its value fr3

(Dii).

NOW frr- Equation 72) we know that

2'2
A [,(1  n2  

(B2

n=, e_ (4 + (n•) 3 2'

n~n2 n�n2 12=--- +-(B)
A_ nA( A2 +n2)

n2 57 f 2"301

No rI qain7)w nwta
A n 4_nn



N ii i ••mmm ..

1a (2 N 2 t

Substituting in Equation (B6) from Equations (B4.- B5),

A Av A A A 2 A
v 3 ).3 + '2 " +""" (Bl1)

As in the text, the componer.nt of yaw may be approximated by an

epicycle.

A
sin0  + K2  si (B9)

vhere K,, are real constantr and

k are real linear functions of p.

If Equations (B8 - 19) are used, a asl algebraic effort puts

Equation (BT) in its final rorm: (31O)

2 22 2
A~) 2 wl K16-+ 2 A )K2o.(l2K

+ periodic terms + hisher order teo-s

In order to get an estia~te of the range of accuracy of this
approxiiation we will consider the case of constant precession about the
trajectory. Under this assumption one of the amplitudes of oscillation

vanishes and for a linear swent Equations (109 - 10) reduce to

102 2
0,1 V~4~:b~ Kl 0 (Bll)

Zbr *i 2
)b/rMk 0

21/2

From Zquations (8T - 88) and (l10),
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1~ 2 1 2(p)
•- ( ) i0  1 ( 1 r, K_ (B12)

A 1 21 34

01' 0 .' (1 io - Ko (B13)

1 "- (i 1 4 1 2 + 3 K

Combining Equations (Bll) ani (313),

1 2 3 4

-2

vbere s - (s is the gyroscopic stability factor) and the + sign

is taken for i - 1 while the - sign is appropriate for i - 2.

is the rate of preceesion about the trajectory or equivalently
the rate measured in the range co-ordinate system, it Is easy to see

that 01' is its projection on the Missile's axis.

Oi J (B15)

AAlthough V is actualy a fluctuating quantity the period of the motion

in the fixed-plane co-ordinates must be the same as that in the range

co-ordinate system. Equation (B15) is, therefore, the exact form of

Equation (B13). As can be easily verified the expression in NO in

Equation (B13) is actually an expansion of A .(1 - .2 1/2

If the first and second order forms* of (B13) are compared with

Equation (B14), aaeasure of the basic accuracy of our tecl-ique as

applied to the geometric non-linearities is possible. In Figure 15 the

ratio of the approximate frequencies to the exact are plotted for both
fast and slow frequencies and both first and seceod order approximations.

For angles Up to 450 the second order approximatB relations show good
accuracy.

M whe first order Aoiof (13) N

1 [ ' Kio2)1] + I K, 0
2 ) while the second order

form includes terms in 4
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APPEDIX C: Effect of Large Yaw in Fixed-Plane Co-ordinates

if the overturning moment it the only acrodynamic mnment to be

considered and this moment's coefficient is assumed to be linear in 8

Equation (A19) assumes the form

+" ,(V ... 2 X, + F82 0(7-ý_V) + i(V V" 0

For the fixed-plane system v is given by Equation (81 Neglecting

squares of Ki and making use of Equations (90) for I ,

AA]A -i'2t A (2
"+ 2')(b?) i(- 2v2 ' - o . •2  

-A

From Eqauation (78),

V

Xf we consider orly the constant terms and those with frequencies (02.
ond the epicycle solutinm my be substituted in Equation (C3)~ 2-
and we obtain the following resejit Ok (if

1 [K12; + P1 2 (e 01 )+ I :(02 01)j1..

V . - 1-. --- ,. 1 Kr -e + ... (•

Substituting the epicycle and Equations (C4 - C5) in Equation (C2) we can

obtain a pair of equations similar to Equations (92 - 93) but with

additional terms comin from v and 0

2 +,4 + 142 +02- (6

6060!
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S' 2 2

P2 K2~ 2 12 1c
2~ 07

Equations (C6 - C7) may now be simplified by use of the linear approxi-

mation - + '.on the coefficients of the quadratic terms K0 2 .

2 2.
+ (1)K1 ~ ($(-CS)*

- ~~~- 5~'o e'~ -~ ~b 2  0c9)

Eliminating first MO and then from Equations (C8) and (C9), the following

final results are available.

A I ½ <2or + K2 2 + * I
01  '72[ 1  1 K 0 2] K

;2 1 2Y1 I2nn ( 1)

Since these equations are identical with Equations (96 - 97) the v

correction for the co-ordinate system used in the text is based on

the same equivalent linearization assumption a" the other results of

this report.

APPEDIX D: SWERVING MOON FOR NOJ-LIMEAR PCBC

Since a proper treatment of the swerving motion should yield values

of • 2 which my be compared with the results of the center of mSt

method, we will conoider in the appendix the swerving motion of a

missile asted on by non-linear aerodynamic forces. If the aerodynamic

force in the range oe-ordinates is denoted by (F .:,, Fr h.I 3r ' it can

be shown from Equation (63) that

K
" t ~61.
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3 /F

"3 nl V n.nF -' tF

- . ". 4 "(,+ -•1+

I.

.n n2 , ,,

(:2r n 2<2 2 :2 2

- n1 P2 + ri2n3F3  D2

*Ffr+ IP-(m2 + in 3)F I+2 -In3r3

ftbetituting from Equations (5 -6) and neglecting the small IC, and K

terwj+?

(n, __ + in (D3) +

Nov12 Vq2toi (13 3)-) .sovdfo ndI

AA

622

U3 ylA'

Now f Euatins 13 -14)ftv olvd fo KD an



In order to simplify Equation (D6) we will consider only those terms
a re or les 4oii

dXc2  dx, 3
iind WI are second order in n2 or n 3, Equations (66 - 6T) for X.

A
and 1.3 reduce to Ii

2
n 1n 3dx 3

But both 5 and A ame multiplied by an n 2 or n3 wherever they appear

in Equation (D6) , and hen"e, we need only cons14er second order approxi-

nations to them.

2 P2

52X 2 . 2 '2 +11 '3 1 22 2 0n9)

"n -"(D10)

Inserting Equations (D7 - D 10) in Equation (D6) and regrouping,

1 2 +) -1- 3 + - ) + i(n

Newton's equation for motion in the x2 x3 plane may be written in the

form3)F 2 i 3 ~u~ a (D 12)
vhr. a3 rg + Fr mt

= where a is Mass

&(3 Is the Coriolis acceleration.*

An expression from a in given in Reference 5.

S. . .. . ,;. . ...
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If ve change the Independent variable in Equation (D 12) from time to

dim-~laionless arclength 1)ýýt n ov for tbe acceleration,
d

0

F _if (D 13)

Substituting in Equation (D 13) from Equation (D 1.1) and. noting that

drag term in (D 11) differs from the 2term in (D 13) by a fourath ore-r

tern, we can integrate Equation (D 1.3) and. obtain the following form

4. 1 - +i + 5 i S;7D 4

( ~ 2/2

L L

2 * 7 2 dr S
L L



1/2 ~-

(1 2) 23(

31 152 +1 +A2~2 V

If the assumed epicyc~ic solution for '5Were Substituted in the third

term on the right side of Equation (D 15) a simple calculation would I
show that the resulting expression does not contain either a constant

term or terms in the difference frequencies. This term in Equation (D 15)

will, therefore, be placed iii olar error exprespion. If a linear L
dependence of the lift coeificient on 52 is asallme~d and fourth powers of
K io to are negltccted,

p(D 16)

L L

where Jk2 J~

Inserting the general expression for a ds'nped epicycle for X in Equation (D 16)

and regrouping,

SL 2 L L2 8el e + [J?- JL8t2 %.2 ic2 e Yidq +Ei

ii (D 1T)

where 8*1
2  21 +2Y-2 2

2 2
e2

1P q

L L

-,~ -65
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EQ 3 K' K,~ +(K
2  K e 4 - I1 10

+ (K. 2 _K")~ K e P2+ KI K2

4 KIY2 e
1/

=imilarly,/

S F - t [ O i F e 1?

L L 0  
elj

+ + JF1e 2 .K2  1e dr dq + !/ (1) 18)

.O -2 ]

where -. dr dq
L L

42a J2 t r

Equations (D 17 - D 18) msy be used either for the analysis of the

results of preoent swerve reductions5 or for the cor4truction of a nev

ower"e reduction. If the .1 gnt untnown epicyle swerve reduction is

considered, Equations (D 17 - D 18) without the error terna indicate

that the lift and YAgnus force coefficients as obtained from a given

mode of oscillation should be plotted against the appropriat effective

yaw squarod.*

It is interesting to note that for a rapidly spinning model oathcugh

only the swerve aesoceted with the. fivw am•, K2 , .a masurable, the

squared amplitudP of the faet arm has twice as i•,cu% weight in the

calculation of e2 as that of the slow arm.

SThe more modern Lr sderve rRduction sny be applied to %0 -•uroment
of non-31rear forces when the model iv raridly spinning. Ouly
the slow arm makes a Yeasurable contribution and the coefficients
obtained from this reduction should be plotted against 6

Nil/ V



A awci&al Virpoce saee-Ye reductiOn may be construcLt- whc• .... not

-Irct h error Let'Ia. To do this we revrite EquatiOnS ( D 17 - D 18).

S"L 02 2)2 / Xr dq (D 19)L O + J L (Y-0 "2Jdrd
3L" LLL L

L L

S(K v K+ • ^(K +dr dq

L L (D 2)

+ ( K1e +. K, K2c )drdq +EF

L L

If estimtes awe made for JLo, 3JL2' ' ro an- 2' th.k lat two terms on

the right sides of Equations (D 19 - D 20) are known functions of P &Ad

be aubutra.ted fr•m the measuredX2 1 3 of Equation (D Ik, If

the mA..fte4i EqLAtion (D I4) Ia six w&Owks 14 fitted by 14.=t Lqufb

to the measured •- 2 ,1s, individual round Nialues of + "

(K 2 o ~ ) and J, 2 K 2 ) way be obtained. W~hen these

values for different models of the same configslrstion t ired at the umee
2 tefniodrlfoc

Vach number a"e plotted against 2 h niida oc

coefficients my be obtainud. Should they diffcr from the initial gu•aes

rthe procesos n be iterated. This rtiuction hael been coded for the

(RIA and is available for use.
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Afr'ENDIX E: LAR~GE YAWlING NOTION WuL±IR AIL !O 'UI1V 1 IOUl3

In this AppeadIx we now will apply our techn1iques to the

equation with non-linearities in all the moments. Only a

L-,e..~r dependeaice of the moment coo!? ieients on 8 2will be considered.

if and AJLin Equation (20) are approximaited by -g~ (82) and JL6 21

respectively, that equation may be written in the following form:

+ r1o+4  o2  j '21 52' *21 (El

528 + iv(T +T*2 a)2 0 (El

vhe EK0 J -84k2 J -

-2
Y -r g ~LO - j o+k 2  TNoJMAO

De E2 M 2 %2 MA8

-T-2

%2 ~ ~ - *2 v

-2r
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Substituting Equation: 24) for a damped epicycle in Equation (El) and
"-ting the coefficient of Kl1ei l to zero, ve obtain the following

2
_.o.(Our, basic asmtoreuesthat Ki2's which should be

in Equation (E2) & replaced by midrange value K i.)

(E2) -

'2 * *22

(-ý2il 0~% ýO al 2 eJ. + 2j-a

02 2

A similar equation can be derived from the coefficient of K2 ei. If

squares of K are anitted in the equatiow for ( - + i0j) and

( +Z÷ io£;), the familiar relations for the linear case may be obtained:

+ a~l + a,

0 TO-

Since in the linear case the equation: for • is unaffected by dampinF

and that for No has a very mall term from the damping, we would exp.-ct

the addition of damping to have little effect on Equations '!2) and (93).

If we make the simplifying assumption that this is the case, the reel
part of Equation (12) and its equivalent for '2 e0 1?ad yield very

slightly modified versions of Equation (92) and (93) and only the imaginary

parts of these equations need be considered.* (i•)

The precise effect of the damping is the addition of .(H -ai) to

Eq. (91) and 0x2( - C2) to Eq. (92). (Bee Eqs. 109-O10).

6.
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(L, 0  ') 2 ~ ( 2 + c~ 2  + )K2202K 0
+A"~ (T, T5 2 EIC02 K20

2 )0 + K10201]

2~ ~ 20 -. + VOýn 2 ) + ( #2 CVi)K1 0
2 = 0

The appearance of i 2ir Equations (Eli. and (E5) could have been predicted

from the fact that PT is the imaginary p&urt of the coefficient of X.

wehile 14 1. the real part of the same coefficient. Thus for a Magnas force

which is a polynnmial function of 62 , the relations in Table I may be used

in the generalized forms of Equations (Eli) and (E5) in the same way that

they may be used for a polynomial static moment in generalized forms of

Eqa. (92) and (93).

V the small geometric non-linearity terms are amittadj, linear damping

=sent j are assumed, and the effect of the small non-linear lift terms is

neglected, Equations (14i) and (E5) assume the simple forms

0 (t + T2 5*l& (96)

a 2 v(Tr + T2 8s2  (ET)

An eamiatio ofEquations (92)) and 1,93) shown that when the .%~ow-tric non-

lineA ity tem eneglected, the feunisdpn nteapiue

throug their corresponding effective squared yaws, 8e. Thus, we have
the Important result that under these assumptions the damping of a given

mod* is related to the amplitude of the tota~l motion by means of its

effective squoire yaw. In other words, for fixed aerocy.vmcic characteristics

end spin, the damping exponents, cgare fnictions of tae~j 2, a/ alone.
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If Equation (Ei) is now subtracted from Equation (E5), the rebult

solved for H. and simplified by use of Equation (94)

o 2 22 2 21 0
2-

HOo. + ,. rng-01o02 01 02

2 2,

0 (o * ¢2)()
-K ~- 2 (K 1  

32 0 ) 2E8

30ra nj 3 .- ( 0 a- Z

+her e fr idge a + a2 ,(ran2)

Elirenating N from Equatiols (E4 - E5) and simpoifying by use of Equation (94),

end ienorin all Ksr t.., we obtain theu following equation.

To+ b2 T -0 i2l - 2002t2 (E9)

T0 TB
2 
a range + H2( 1

2 22

20.02 (Ctý -CýX K,, F-2 'CIO k10  + KC2 0
20

where T (-- -- )[-()(lO I-K2l

rge 01 +0201 2

01 'Cý-'2) + ic2v02)

(0;:, 0ý)2"0 0')

Tequit* fomdbeexpressions for Hrng and Traa differ

appreciably from the simple relations for no and roof Equatioflw WE)

only vhen tbe yawisqtelr.

*The subscript "ranige" denote the quantity whichbe range reduction

would get if only the geometric non-linearities were considered.
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I R !1. -

The ranize values of J - J14A ai3are defined by the relations

followin.g Equation (20)1

J~range =c -,2 J -Trne

an ae rangwedb ther dfniton frcm Eqain-(l (E89),

M2 2 I

an L 0 maybe btaned (E 12)
range2 2

relations~JK2 ar usdOiXqatos 
,n

IfE thes (E8A +9 H0 %2

range 
(E102

B 01 + 02 2 2

-KT,52 ( rl)( r1)('Ko -K 2 0 )

rangeO 02 121

+ IS
+ 1K2+ &2

1 L2 2~ b, D 2 + &4 1L0

a.- ~ 2 [0 - 5~2-(w 0~K 0 1 0

+ b + b* + +72



a k,,

3 F K 0 K1 Y-2 4 0 1

a4 - ()k 2
2 (10 2 + o20

b A 2 2 '2 2-2
b1 (20•z0)(c, " K_ )('l - 02 )

-" k1
2 [20.12 ,2 2 )Ko0

2  (20122 _, )KI ('t2 )-2

"b 2 '2 2I 2 - 12)

3 2 12. 2  2 )

(1) 2 ( 1
2 ~ 2 012)(01 + 02)-

The terms in a and b• In Equations (E 12 - E 13) are usually small
and can be neglected. (For those cases where these terms are important

the terms must be calculated* and subtracted from the range vaý.ues of

K M-'~ and. IT.) Equation I Z 12) predicts a dependence of ,M-Kr ag

on both •2 and • 2 while Equation (E 13) predicts a dependence of
"Trange

onbth% and KT52

I

Only three rmmds of the 126 rounde of the Army - Navy Spinner Rocket
Proin r*q. .ed this calculation. For one of tUese, however, the

correction to F.- j due to a, IN2 was about 3)%,of the uncbrrectedValue7

!7 7'"W.



REFERENCE3

1. Leitmann. G., Nonlirear Equations of Motion of a Spin-Stabilized
"*'qsile Solved b- a Perturbation Methd, NAVORD Report 3364,

2. McShane, E. J., Kelley, J. L., Reno, F., Exterior Ballistics,
University of Denver Press, (1955).

3. Murphy, C. H., Nicolaides, J. D., A Generalized Ballistic Force
System, BEL Repjrt 933 (May, 1953).

4. Maple, C. G., Synge, J. L., Aerodynamic Symetry of Projectiles,
r. A. M. Vol. IV, No. 3, (Jn 19ý9).

5. Murphy, C. H., Data Reduction for the Free IPlight Spark Ranges,
BRL Report 900, (Feb. 1954).

6. Murphy, C. H., Schmidt, I E., The Effect of Length on the
Aerodynamic Properties of Bodies of RevolutionB L Report 876
(Aug 19~)1)

7. Minorski, N., Introduction to Non-Linear Mechanics, J. W. Edwards,
19T7.

8. Maynard, L. G., Galbraith, A. S., An Effect of the Choice of Axes
in the ielley - McShane Theory of a Yawing Projectile, BRIM =lo
(Aug. 1954).

9. Rogers, W. K., The Transonic Free Flight Range, ERL Report 849
(Feb. 1953).

10. Roecker, E. T., Aerodrnamic Properties and Launching Characteristics
of the 81M4 Mortar Shell M56 and T202E6 With Folding and Stationary
Fins, EM 69, (Sept. 19054).

U2. Luchuk, W., Sparks, W., Wind-Tunnel Magnus Characteristics of the
7-Caliber Army-Navy Spinner Rocket, NAVORD 3bl5, (Sept. 1954).

12. Murphy, C. f., Effect of Gravity on Yawing Motion, BRLTR 743
(Jume 1952).

74

iii W ..



I'))

0~ cl

w IN,

U) 0

~Loj 0

:Ix

04Y

0OV 
C)

75.

-MV0



F-777777ý1.->

MlOMvENT COEFFICIENT.

EFFECTIVE SQUARED YAWf
81 mm MORTAR

u (K' + Kt-.) 0**

01

use-STANDARD

Km

T28E6-BD-306
P4

TZSES-RD-06

U'-M5-UD- 301
-6

76

777,



00
Lu

-u

Fij2

4 Nj

U 7



C~1*
60I

- - f
~~i.

(P4

CIDI

0.

4-

0A q

0 I



cr-i

IrI

___ 14 C1D

z m-



W in

e4

4 ifo

4v 
i .

800

S\ : - .I'

!K

I .. . . .

1 _



c'J

4,4
C-N

0:

01

0. Go N 0

EQ - -

IF lip



CA

cr.1
0

-I 0 m

400

0 .2



_....... LO__ _ _I

m 0j

GNo

U-.

0
0 s

0 0 0 0g

3ONNV8

M0" 7-97p

7-7MR



*010

400

-44

-rw



LJf

D L J

In, -Jwy

9 8 (n

-N c

*> .90 w

SN in i1

0

Y.



0 -0 0

_J-0

00

w 2

0 y4

4w W LCI

86



LI

01 - -

CM

\i I

Cf ) I -

oo 0l

C) 0\0

IN 0

87t

'7 W
........ .......

LL~



%W6

00

I~l -88



00

I t 04

lai _ 0-•-

-r9

. .o l

S- ..0

.~ . . .



DISTRIUTIO'N LIST

of No. of
5 Organization Copies Organizatl-::r.,

Chicf of Ordnw~cc Cozu.d- r •:wi
Dep•artment of the Army naval Air Mibsile Test Ctr.

IWashington 25, D. C. Point Muiu, Cali~rornia
Attn: OFYTB - Bal Sec

3 Director
10 British Joint Services Naval Advisory ConLilttee

Mission for Aeronautics
1800 K Street, N. W. 1512 H Street, N. W.
Waahington 6, D. C. Washin&ton 25, D. C.
Attn: Mr. John I-,zard,

Reports Officer 1 Conmanding Officer
Naval Air Rockel; Test

CanadianArmy•-t.tff Station
2450 Massachusetts Avenue Lake Denmark

Washington 8, D. C. Dover, N. J.

3 Chief, Bureau of Ordnance 5 Commander
Departmet of the Navy Naval Ordnance TeaL Station
WashIngton 25, D. C. China Lake, California
Attn: Re3 Attn: Technical Library

Dr. IVa. Hazeltine
2 Commander Dr. I. Highberg

Naval Proving Ground Mr. H. H. Newkirk
Dahlgren, Virginia
Attn: Dr. C. Cohen Comander

"Naval Air Development Ctr.
2 Chief of Naval Research Johnsville, Pennsylvania

Technical Information
Division 2 National Advisory Comwittee

Library of Congress for Aeronautics
Washington 25, D. C Ames Laboratory

Moffett Fiell, California
Commander Attn: Dr. A. C. Charters
Naval Ordnance Laboratory Mr. I. J. Alen

W hte Oak

Silver Spring 19, Maryland 3 National Advisory Comittee
kttn; Xx. Nestingeu for Aeronautics

Dr. Kay Lawglvy Memorial Aeronautical
Dr. Xurmg laboratory

1xgley Field, Virginin

2 Suerintendent Atts: Mr. J. BirdNaa Postgraduate School Mr. C. Z.Brw
Monterey, California 'rW. Adolf Busemann
Attn: Dr. Read

* 91

rA
__ _ __ _ __ __ _ __ __ __ _ 91_ _

_________

-" • .:'2/ L7



DIST'UIBUTION LIST

"• ,- o No. o fOrganization Conies Organization

2 U. S. Atomic Energy 1 Director, JPL Ord Corps

Commission Installation
Sandia Corporation Department of the Army

P. 0. Box 5900 "8W Dak Grove Drive

Albuquerque, Aev MexicJ Pasadena, California

Attn: Mr. Wynne K. Cox Attn: Mr. Irl E. Newlan,
Reports C(roup

National Advisory CoMM.
for Aeronautics 1 Commanding Geueral

Levis Flight Propulsion Arnold Engineering
"*Laboratory Development Center

Cleveland Airport Tullahoma, Tenness;ee
Cleveland, Ohio Attn: Depu'ty Chief of

Attn: F. K. Moore % Staff, R&D

Commander 1 Cmmnding Officer and

USAF Fighter Weapons Director

School David W. Taylor Model
Ne.llie Air Force Bassi, Basin

Nevada 
Washington 7, D. C.

Attn: Lt. X. A. Cobra Attn: Aerodynamics
Laboratory

. Commandez
Air Force Armament Center 1 Comnanding General

gFlin Air Force Base, Fla. Redstone Arsenal

Attn: AC.jT Huntsville, Alabama
Attn: Technical Libriry

Comeander
W'riZht Air DVvelopment 3 Comanding General

Center Pi.-zatinny Arsenal

Wright.Pae.terson Air Dover, New Jersey

Force Base, Ohio Attn: Samuel Feltman
Attn:WCHRAmmunition 

labs.

Attn:WURRL. E. Schmidt

Coomanding GenerLa

Air Research and 1 Comnarding General

Development Coemand Frsnkford A. 3enal

P. o. Box 1 3 9 5  
Philadelphia 37, Penna.

Baltimore 3, Maryland Attn: Reports Officer

Attn: Deputy for
Developent Ccmnanding Officer

Ch .ical Corps Chemical

5 Director 
% nd Radiological Lab.

Armed Services Technical Arzk, Chemical Ctr., Md.

Information Agency
Docwgents Service Center
Knott Building
D•a•ton 2, Ohio
"Attn: DWC - SD

92

=..

* i . .; , :, . . . . .. . ; • :, ,;. . _

"-"J': . i . . • : 
. .

.



11il
DMMSTRI~IOIT LIST 

I L
oNo. of

'. (organization Copies Orsalization

Director 
Cornell Ae-o'qaiatical Lab., Inc.

e osesearch 455 Genesee Street
operationse Buffalo 21, New York
Department of the A Attn: Misa Elma T. Evans
CDepyCartetsfte, M rary and.7100 Connecticut Avenue Libran
WashingyCa 13, Mr.lC. 1 California Institute

of Technology

2 Amour Research Foundation Pasadena, California

of the Illinois Inst-tute Attn: Library

of Technology1
Techno.OgY Center 1 Consolidated Vultee

Chicago 16, Illin6is Aircraft Corporation
Attn: Mr. W. Casier Ordnance Aerophysics Lab.

Dr. A. 1undheiler Daingerfield, Texas
Attn: Mr. J. E. Arnold

2 Applied '
5bysics LaboratorY

.... 8621 Georgia Avenue Crosley Division
Johns Hopkins University Avco Manufacturln! Corp.

Silver Spring, Marylan& 2630 Glenr.lMle Milford Rd.

Attn: Mr. George L. Box 116 O

Seielstad Evendale, Ohio

.1 AeroPhYsics Devel-3pent Consolidated Vultee Aircraft

P. 0. Box 657 Corporation

Pacific Palisades, Calif. P.O0. Box Te1

Attn: Dr. William Bol03y Fort Worth, Texas
Attn: Mr. L. W. Bonnell

1. American Boish Arms Corp.
1rma Division Ca.ifornia Institute of

(erden City, New York Technology
Attn: Mr. R. C. Bererdsen Normsn Bridge Laorm r1

of physics

A.C. Spark Plug Division pasadena, California
General Motors Corporatton Attn: Dr. Leverett Davis,

1925 E. Kanilvorth Place Jr

Milvakee 2, Wbiconsin Unjversjt7 ef Southern

Attn: Mr. I. Davis Caive r niy
California

Northrtn Aircraftj, L~rJ P. Engineering Center
Deps •nt •8 L; Angeles 7, Calif.

Ogden Air Mtteriel Area Atn: Mr. e. r. Saffel,

3avthor-e, California irector

Attn: Mr. D. C. Olmere

IWN

I

! /
4

4.



k"/

77 4

rrmurMTION LIST

I' '" No. of

^Ogan., zattl on copies Organizition

Louglas Aircraft Co. University of Michigan

Y3WO'Ocean Blvd. Willcw Pin Research Ctr.

A-290 (Missile Engnrg.) Willos; Rurn Airport

Santa Monica, Calif. Ypsilanti, Michigan

Attn: Dr. Robert M. Wood Attn: Mr. J. :. Carey

E:zrson Electric M- - •MeDcDflnell Aircraft, Corp.

L~~eraon~P ^'.ct~ Manf^-
uring Co=pany P.O. o 1

810n W. Floris•nt Avenue St. Louis 3, Missouri

St. louIs 21, Missouri Attn: Mr. r. M. Pl2.e-h

Attn: Mr. G. Rauser North American Aviation,
1 north Amrian vitin

¶ Glenn L. Martin Company Tncor~orated
Baltimore 

3 , Maryland 12214 Lakewood Blvd.

Attn: Mr. jim Elms

2010 E. Hennepi Ave. 1 North American Aviation,Genra E. lls, ncepiAv.

Minneapolis, Minnesota Incorporated

Attn: Mr. R. C. Humtington, International Airportr

Mech. Division Los A•2ele8, Caliorn4 a
Attn: ,. Covert and G.

Guggenheil, _-=nautical Lab. Bussiere

California Inistitute of Tech.
pasadena, u.lifo.nia 1 Borth Carolina stote College

Attn: Prof. H W. Liepman Radi±gh, North Carolina
Attn: Pro-. John W. Cell

General Electric Company

Schenectady, New York I Sperry Gyroscope Comp&ny

Attn: Mhr. F. V. Johnsuo, Division of the Sperry Corp.
A"• Grect Neck, L. I., Nev York

Attn: Mr. J. J. Gallaghan,
M, W. Kellogg Company Federal DePartment

rout o: Danforth Avenue
jersey CitY 3. New Jersey 1 Wright AeronwiticMal Divirion
A~tn: Mr. Robert A. Miller Crtias-Wright Corporation

Wood-Ridc6e, e Jer ey
Lockheed Air'.raft CorporationL Avtn: Sales Depertmeot

Factory 'A" (Gove-nment)

P. o. nox 5 ,c
Burbank, California i Unitei Aircraft Corp.

Attn: Mr. Ed Baldwin Reseeach Depart-MrtFast I"artford 8, Corn. al

MASsachusetts Institute Of Attn: Mr. Robert C. Sale

Technology
Instrumentation Laboratory 1 United Shoe Machine uorp.
Cambridge 39, Massachusetts Balch Stre'ýt

Beverly, K.ssachusetts
Attn: Mr. R. S. Pttker

94

7777"t

& 7/


